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APPLICATION OF A BANG-BANG CONTROL SYSTEM TO 

TWO SPINNING SPACE VEHICLFS 

By Paul S. Rempfer and Jerrold H. Suddath 
Langley Research Center 

A study w a s  made of a technique f o r  t he  synthesis of bang-bang control 
systems as applied t o  the  a t t i tude  control of spinning space vehicles. 
w a s  placed on studying de ta i l s  of the  technique when applied t o  a system with 
component dynamics. 
cycles. 

E$rphaBis 

Consideration w a s  a l so  given t o  the handling of l i m i t  

The investigation w a s  based primarily on analog computer simulations of the  
a t t i tude  control of two different  spin-stabilized space vehicles. The report 
includes the development OT the  switching logic and of a simple cut-off function 
t o  eliminate wasting of fuel i n  l i m i t  cycles. 
computer simulations are included f o r  i l l u s t r a t i v e  purposes. 

Typical results obtained from 

INTRODUCTION 

Reference 1 presented the development and an example application of a 
technique f o r  t he  synthesis of bang-bang control systems. Although the  technique 
w a s  suff ic ient ly  general t o  handle system component dynamics, the  i l l u s t r a t i v e  
example excluded such effects  i n  the  in te res t  of c la r i ty .  However, the inclu- 
sion of system component dynamics and the consideration of l i m i t  cycles are 
pract ical  aspects of the  synthesis problem which require attention. 

The purpose of t h i s  investigation is  t o  study the technique of reference 1 
when system component dynamics and l i m i t  cycles are considered and t o  show how 
the  technique might be used i n  a design study. 

The investigation w a s  based primarily on analog-computer simulations of 
t he  a t t i tude  control of two different  spin-stabilized space vehicles. 
of these two vehicles, which had a pencillike configuration and high spin rate, 
w a s  taken t o  be representative of some small satellite and/or upper stage con- 
figurations. The second vehicle, which had a toroidal  configuration and l o w  
spin rate, w a s  taken t o  be representative of some manned space station 
configurations. 

The first 



SYMBOLS 

n x n matrix of constant coefficients determined by dynamics of 
system 

[AI 

PI 
2 constant n-vector determined by dynamics of system 

constant positive def in i te  n x n matrix 

5;' n-dimensional gain vector 

uni t  vector i n  direction of free gyro spin axis, desired orientation + e 
of controlled vehicle 

2 I transverse moment of i ne r t i a  Iy = Iz, slug-ft 

Ix,Iy,Iz moments of i ne r t i a  of vehicle about principal vehicle X-, Y-, and 
Z-axes, respectively, slug-ft' 

J maximum available control acceleration, radians/sec2 

Q 
S 

T 

Tm 

T2 

t 

U 

Un 

2 

constant scalar, radians-l 

const ant scalar, se c/radian 

maxi" pitch-control moment, f t - l b  

angular veloci t ies  about principal X-, Y-, and Z-axes, respectively, 
radians / s e c 

posit ive constant spin rate of vehicle about X-axis, radians/sec 

lagging pitch rate t o  be fed back, radians/sec2 

Laplace transform variable 

time constant f o r  l inear  j e t  time lag, sec 

jet-model t i m e  constant, sec 

gyro time constant, sec2 

gyro time constant, sec 

time, sec 

l inear ly  lagging scalar  control variable 

nonlinearly lagging scalar control variable 



scalar  control parameter 

principal vehicle-axis coordinates 

n-dimensional state vector 

variable defined by equation 

gimbal angles of free gyro measured re la t ive  t o  spinning principal 

(A21), radians/sec2 

body axes, radians 

eigenvalue of matrix, defined by equation (A3) 

switching function, b x 

frequency defined by equation (A8), radians/se c 

ab solute expres s i  on 

determinant of quantity i n  parentheses 

algebraic sign of term within brackets 

Subscripts: 

m,n general subscript notation. Subscript m used t o  d i f fe ren t ia te  
between idealized system (m = 0, fourth-order l i nea r  control system); 
system including j e t  dynamics (a = 1, fifth-order l inear  control 
system); and system including both jet  dynamics and rate-gyro 
dynamics ( m  = 2, seventh-order l inear  system and f inal  seventh- 
order nonlinear system). Subscript n used t o  refer t o  par t icular  
component of variable when variable is  a vector. When only one 
subscript i s  used, the  variable re la tes  t o  the  m system. 

Double subscripts denote the  components of a vector. 

An aster isk denotes the transpose of a matrix. 

Dots over symbols 
indicate different ia t ion with respect t o  time. 
a vector. 

An arrow above a symbol denotes 

MOTIVATION 

The Idealized Control System 

The idealized control system w a s  developed i n  reference 1. It is  idealized 
i n  tha t  it does not consider system time lags. For convenience, a br ief  review 
of t h i s  system is  given. 

Figure 1 shows the  idealized control system. The X-, Y-, and Z-axes are 
the  vehicle principal body axes. 
i s  designated as the  spin axis. 

The vehicle i s  spun about the  X - a x i s  which 
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Figure 1.- Original idealized control 
system. 

The control system consists 
of a free gyro, a rate gyro, a 
camputer, and pitch jets. The free 
gyro is  set so tha t  i t s  rotor  
axis  is pa ra l l e l  with the desired 
orientation of the vehicle spin 
axis i n  i n e r t i a l  space. The 
angles a and p then determine 
the  misalinement of t he  vehicle 
spin axis from i ts  desired orienta- 
t ion.  It should be noted tha t  
while t he  misalinement sensing 
device i s  considered t o  be a free 
gyro, it is  by no means essent ia l  
t ha t  t h i s  par t icular  instrument be 
used. Any device capable of meas- 
uring the  misalinement angle p 
would be acceptable. 

The r a t e  gyro is  fixed so as 
t o  sense the  pitch r a t e  
Because of gyroscopic coupling i n  
the  system, the angle p and the  
pitch rate q are  sufficient t o  

q. 

control the system. 
t o  control t he  a t t i tude  of the  vehicle. The rate q is  fed back through the 
gain bo,1 and the  angle j3 is  fed back through the gain b0,4. The sum of the 
feedback u i s  the  switching function. When it i s  positive, the  pitch-control 
moment i s  made positive; when it i s  negative, the  moment i s  made negative. 

For the  same reason, a pitch control-moment i s  sufficient 

I n  reference 1, it w a s  shown tha t  time-dependent gains can be used t o  
obtain good system response and t o  avoid end points. 
points, see refs .  2 and 3 . )  The form of time dependence used w a s  

(For a discussion of end 

- 
where &,n i s  the  time constant portion of bm,n; bm,n is the  amplitude of 
the  time varying p r t i o n  of h , n ;  and %,n i s  the  frequency of the  t i m e  
varying portion of b , n .  

Comp one nt D y n d  c s 

The pitch jet.- If the control system were implemented, there would be some 
type of lag  i n  the  pitch-control moment due t o  pitch-jet  dynamics. 
a j e t  response is  composed of a transport l ag ,  a buildup t o  peak thrust ,  a shut- 
down transport lag, and a decay t o  zero thrust .  
t h i s  investigation is  the  study of a control-synthesis technique, a relat ively 
simple je t  response w a s  deemed adequate f o r  study. I n  practice, complications 
such as difference between thrust  rise and decay dynanics may occur. Such 

Typically, 

Since the  main objective of 
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complications are  not considered i n  the  
present investigation. The nonlinear 
je t  response considered i n  t h i s  study is  
shown i n  figure 2, and i t s  characteris- 
t i c s  are: 

I n i t i a l  transport lag, sec . . . .  0.014 

see . . . . . . . . . . . . . .  0.008 
Shutdown transport lag, sec . . .  0.008 

Linear buildup time constant, 

Linear decay time constant, 
sec . . . . . . . . . . . . . .  0.008 

The rate gyro.- I n  addition $0 the  
pitch-jet  time lag, there  w o u l d  be a time 
l a g  i n  the  pitch-rate feedback due t o  
rate-gyro dynamics. The equations f o r  a 
rate gyro are  derived i n  reference 4, and 
the  characterist ics of the  rate gyro con- 
sidered i n  t h i s  study are: 

Thrust 

Dashed l i n e  - ideal pulse 

Solid l i n e  - nonlinear pulse 

Shutdovn 
transport 

\ 
A 1---7-=i--l I 

I 
I 
I 

Transport 

Figure 2.- Simulated nonlinear jet 
response compared w i t h  ideal 
pulse. 

Maximum pitch rate, g, deg/sec . . . . . . . . . . . . . . . . . . . .  
Maximum gimbal angle, deg 3 
Gyro time constant, T 1  2 . sec2 . . . . . . . . . . . . . . . . . . . .  0.00036 
Gyro time constant, T2, sec . . . . . . . . . . . . . . . . . . . . .  0.120 

100 . . . . . . . . . . . . . . . . . . . . . .  

The time lag i s  l inear  and second order. The equation f o r  the lagging pitch 
ra te  Q is  given by 

Effect of Component Dynamics 

I n  reference 1, the  idealized control system w a s  applied t o  a rapidly 
spinning space vehicle with a pencill ike configuration. The characterist ics of 
the  space vehicle are: 

Ix, s lug-f t2 . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8.0 
I, slug-f't2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40.0 
po, radians per sec . . . . . . . . . . . . . . . . . . . . . . . . . .  25.0 
y l t f ' t - l b  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40.0 

Gains were found f o r  which the  system performed w e l l ;  however, the system time 
lags had not been considered. 
time lag were introduced in to  the  idealized system, the  system s t ab i l i t y  deteri- 
orated. This effect  i s  i l l u s t r a t ed  i n  figure 3, where a typical  system response 
without time lags is  compared with the  corresponding response with time lags. 

When the  pitch-rate time lag  and the  pitch-jet  

5 
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- .. . .  . 

Time, seconds 

(a)  System without time lags. 

Time. seconds 

(b) System with time lags. 

Figure 3 . -  Idealized control system f o r  an i n i t i a l  condition of 
q = 1.0 radianlsec. 
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Statement of Problem 

The idealized control system f o r  the  a t t i t ude  s tab i l iza t ion  of a rapidly 
spinning space vehicle ceases t o  be effective with the introduction of time lags.  
This control system must therefore be modified t o  perform with time lags. 
t h i s  modification accomplished, a cut-off switch must be created t o  eliminate 
the  wasting of fue l  i n  the anticipated l i m i t  cycle. 

With 

ANALYSIS 

Modification f o r  Time Lags 

I n  order t o  get an indication of the  modification necessary i n  the  control 
system, a brief mathematical analysis i n  which l i nea r  time lags were introduced 
w a s  considered. This analysis, which i s  presented i n  the  appendix, indicated 
tha t  t o  correct f o r  a jet time lag, the  je t  output should be fed back. To cor- 
rec t  f o r  the r a t e  gyro time lag, only an adjustment of gains was necessary. 
This approach w a s  used i n  the  analog simulations. It should be pointed out t ha t  
the nonlinear transport l ag  i n  the j e t  response w a s  included i n  the analog 
simulations. 

Use of J e t  Model 

To feed back the  actual  j e t  
response would require adding 
thrus t  sensors t o  the  system. 
The inclusion of these sensors 
would mean additional hardware 
and the  possibi l i ty  of additional 
component dynamics. It w a s  
decided that, rather than feed 
back the actual j e t  response, a 
simpler approach would be t o  
build a model of t he  je t  response 
by use of analog components and 
t o  have i t s  output fed back. A 
fur ther  simplification would be 
t o  make the model l i nea r  and of 
first order. The system, with 
the  l inear  model of the  j e t  
response inserted i n  the  control 
loop, i s  shown i n  figure 4. 

The system w a s  simulated on 
an analog computer, and values 
were found f o r  the  gains and f o r  
t he  model time constant f o r  which 
the  system performed w e l l .  It i s  

Y 

Figure 4.- Modified control system with time 
lags included and model output fed back. 
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emphasized tha t  the choice of m o d e l  can great ly  a f fec t  t he  performance of t he  
system and that, i n  general, t h i s  choice may be a c r i t i c a l  s tep i n  the synthesis 
procedure. 
t he  one considered herein (which, as previously noted, may w e l l  be the  case), 
then a more sophisticated model might be required i n  the  control loop. 

I n  particular,  if the  actual J e t  response i s  more complicated than 

The Cut-Off Switch 

Since the  uncontrolled system is  neutrally stable, the  wasting of fue l  i n  

O f  course, t he  
a l i m i t  cycle can be eliminated by simply turning off the  control when the  
residual rates and misalinement are deemed suff ic ient ly  small. 
cut-off function can depend only on the  information available t o  the  control 
system, which i n  t h i s  case w a s  the  angle j3 and the lagging pi tch ra te  Q. 

A cut-off function, based only on f3 and Q, w a s  developed f romthe  fo l -  
lowing considerations. 
magnitudes of p and Q can remain small over re la t ive ly  long time intervals  
only i f  the  magnitudes of a, q, and r a l so  remain small over the  interval .  
Therefore, suff ic ient  infomation on the  magnitudes of the  misalinement and 
rates should be contained i n  the  low-frequency component of k l l  f3 1 + k2 IQI, 
where k l  and k2 a re  posit ive weighting fac tors  t o  be determined. This 
weighted sum w a s  passed through a low-pass f i l t e r  t o  generate the cut-off f'unc- 
t ion.  
t h i s  f inct ion.  

From the  dynamics of the  problem, it follows tha t  the  

The control system w a s  then turned on o r  off depending on the  value of 

RESULTS AND DISCUSSION 

Nominal Control System fo r  Pencill ike Configuration 

The system performance w a s  judged b i t s  averaQe response time and residual 
misalinement f o r  the  many i n i t i a l  condit 9 ons f o r  which the  system was t r i ed .  
Gains were found f o r  which the  system gave a good overall  performance. 
gains were 
b2,6 = -1.75. The value f o r  the  jet-model time constant 
A good cut-off function w a s  found t o  be the  function 
through a l inear  f i l t e r  with a time constant of 0.1 second. 
turned on when the  cut-off function w a s  greater  than 0.08 and off when it was 
l e s s  than 0.04. 

These 
b2,4 = 4.0 + 4.0 COS 45t, b2,? = 0.6 - 0.6 cos 80t, and 

Tm was 0.016 second. 

The system w a s  
lQ I + 2.5(p I passed 

This system w a s  then considered t o  be the  nominal system. 

A typical  response of the  nominal system is  shown i n  figure 5 .  I n  the  
results,  6 i s  essent ia l ly  the  magnitude of the  e r ror  (i.e., 
6 = Iq I + Ir I + la1 + Ij3 I), and 
u appears t o  be ident ical ly  zero a f t e r  about 1.5 seconds. That u w a s  not 
ident ical ly  zero i s  evident from the  f a c t  that the pi tch control switched 
properly and damped out the error.  The system is  shown t o  damp t o  s l igh t ly  over 
lo i n  angular misalinement at which time the system would run in to  a l i m i t  cycle 
i f  it were not turned off .  

u i s  t h e  switching function. I n  the figure, 

The average response time was about 6 seconds. 



Figure 5.- Time h is tory  of response of penci l l ike configuration t o  control  f o r  i n i t i a l  
angular misdinement of p = 0.2 radian. 

A parametric study.- A study of the various parameters of the  nominal con- 
t r o l  system w a s  made t o  determine t h e i r  effect  on the response. It w a s  expected 
tha t  system sens i t iv i ty  t o  parameter adjustment would increase (decrease) with 
increased (decreased) spin rate .  
simple considerations. 
t i v e  torque at  time 
posit ive torque does not develop u n t i l  Then the  control i s  essen- 
t i a l l y  out of phase by the  amount p07 (where po i s  the  vehicle spin rate) .  
Of course, t h i s  phase error  i s  compensated f o r  by putting i n  a lead of 
where ? is  an approximation of T and can be expressed as T = T + 87. 
(Clearly, 6~ is  the  error  i n  the  approximation.) Hence, the  error  i n  the  
lead compensation, which is  equal t o  

This idea can be explained by the  following 
Suppose the  pitch j e t s  were commanded t o  give a posi- 

t = 0. Suppose also, because of a time lag ,  tha t  the 
t = T > 0. 

po?, 
N 

p0&, is  proportional t o  the spin rate.  
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The jet-model time constant: The nominal system w a s  studied f o r  its 
sens i t iv i ty  t o  a variation i n  the model time constant. Deviations as large as 
+25 percent were tolerable, but la rger  deviations resulted i n  considerably 
longer response times and larger  residual angular misalinements. Figure 6 
shows a typica l  response with a ---percent deviation in the  time constant and 
can be seen t o  compare closely with the nominal response shown i'n f igure 5 .  

It is  reemphasized tha t  large differences between the  decay and the buildup 
character is t ics  of the  actual  jet  response m i g h t  require the use of a more 
sophisticated model within the  control system. 

Time, seconds 

Figure 6.- Time h is tory  of response of penci l l ike configuration t o  control f o r  
i n i t i a l  angular misalinement of p = 0.2 radian with model time constant 
decreased 25 percent. 
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Vehicle spin rate: 
t o  spin-rate deviation. 
as much as 20 percent without result ing i n  ins tab i l i ty .  
i n i t i a l  conditions, t he  system would run into a l i m i t  cycle with a residual 
angular misalinement between 2 O  and 3 O .  
of system performance on i n i t i a l  conditions f o r  a 20-percent decrease i n  spin 
rate. 
fo r  some i n i t i a l  conditions. 

The nominal system w a s  next studied f o r  sens i t iv i ty  
This study indicated tha t  spin rate could be decreased 

However, from certain 

Figure 7 i l l u s t r a t e s  the dependence 

A decrease i n  spin r a t e  greater than 20 percent resulted i n  in s t ab i l i t y  

I. 

. .  . M 

Time, seconds 

( a )  Initial condition q = 1.0 radian/sec. 

Figure 7.- Time h is tory  of response of penci l l ike configuration t o  control f o r  
i n i t i a l  angular misalinement with vehicle spin r a t e  decreased 20 percent. 
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5 ..' 
2 2  5 3  

0 I 2 3 4 5 

Time, seconds 

(b)  I n i t i a l  condition r = 0.5 radian/sec and a = 0.1 radian. 

Figure 7.- Concluded. 

Similar results were obtained f o r  a spin rate increase up t o  5 percent. 
T h a t  i s  t o  say tha t  some i n i t i a l  conditions resulted i n  l i m i t  cycles f o r  an 
increase of 5 percent as i l l u s t r a t ed  by figure 8. An increase i n  spin rate 
greater than 5 percent resulted i n  in s t ab i l i t y  f o r  some i n i t i a l  conditions. 

These resu l t s  clearly show the  expected sens i t iv i ty  t o  parameter adjust- 
ment a t  increased spin rates. It is interesting t o  note tha t  i n  reference 1, 
where time lags were not considered, the  idealized system was relat ively insen- 
si t ive t o  spin-rate deviations up t o  3 0  percent. 

Effect of external moment.- The system w a s  next studied t o  determine the  
For purposes of study, the  moment was taken t o  

Physically, 
effect  of an external moment. 
be constant relative t o  the  spinning principal body axis system. 

12 



I 

, I  

I , ,  
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0 .  I 2 3 4 5 6 7 8 9 

Time. seconds 

( a )  I n i t i a l  condition p = 0.2 radian. 

Figure 8.- Time h is tory  of response of pencil l ike configuration t o  control for i n i t i a l  
angular misalinement with vehicle spin r a t e  increased 5 percent. 

such a disturbance might be due t o  a thrust  misalinement. 
yawing moments, and vector sums of the  two were considered i n  combination with 
various i n i t i a l  conditions. It w a s  found tha t  external torques with magnitudes 
up t o  40 percent of the  control torque did not adversely a f fec t  system perform- 
ance. 

Pitching moments, 

A typ ica l  response with external moment applied i s  shown i n  figure 9. 

Application t o  a Spinning Space Station 

The second vehicle t o  which the control logic of reference 1 w a s  applied 
w a s  a large hexagonal slowly spinning space station. The characterist ics of 
t h i s  vehicle are given i n  the following table: 



. . . . . . . .  

. . . . . . . . .  . . L i  ! I  

Time. seconds 

(b) Initial condition q = 1.0 radian/sec. 

Figure 8.- Concluded. 

2 1% m g - f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.5 x 107 
I, slu@;-ft2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.03 x 107 

My,ft-lb . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 x l d  
po, radians/sec . . . . . . . . . . . . . . . . . . . . . . . . . .  0.314 

Because of i t s  i n e r t i a  r a t i o  and low spin rate, the  vehicle 's  natural frequency 
i s  l o w .  For t h i s  reason it w a s  believed tha t  i n  operation the  control j e t s  
would f i r e  for re la t ive ly  long periods of time. 
lags would have negligible effect  on system performance. 
t he  idealized system w a s  u t i l ized.  

If t h i s  were the  case, the  t i m e  
With t h i s  i n  mind, 
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, , , ,  

Time, seconds 

Figure 9.- Time history of response of pencillike configuration to control for 
initial angular misalinement of p = 0.2 radian and external pitching moment 
applied equal to 0.4%. 

With the idealized system being u t i l i zed  l i m i t  cycles were no longer a 
problem. However, when the  control function becomes small and changes sign 
rapidly the control chatters and operates ineff ic ient ly .  
t o  shut down control operations then s t i l l  existed. 
with a cut-off m c t i o n  similar t o  tha t  used i n  the  study of the pencill ike 
configuration. 

The problem of when 
This problem w a s  handled 

The system w a s  simulated on an analog computer and the  gafns found which 
gave good overall  system response. They were bo,l = -1.0 - cos O . 5 t  and 
bo,4 = 0.2. A good cut-off function w a s  found t o  be 2519 I + l e  I passed 
through a l i nea r  f i l t e r  with a time constant of 5 seconds. The control system 



w a s  then turned on when t h i s  function was greater  than 0.20 and was cut off when 
it w a s  l e s s  than 0.05. Atyp ica l  system response i s  shown i n  figure 10. 

As shown i n  the  figure, jet  f i r i n g  times were on the order of 10 seconds. 
These long firing times obviously result from the  slower spin rate and longer 
natural  periods i n  the  large vehicle. 
seconds i s  clear ly  insignificant i n  such a slowly moving system. 
reason, u t i l i za t ion  of t he  idealized control logic  w a s  considered t o  be jus t i -  
f ied.  From a number of cases where the  i n i t i a l  angular misalinement w a s  
0.1 radian, it w a s  observed that the system would damp t o  v i r tua l ly  no residual 
angular misalinement ( res idkal  angular ra tes  of about 0.0004 radian/sec), a f t e r  
which it would shut off.  

A jet  time lag on the order of 10 m i l l i -  
For t h i s  

The average response time w a s  about 280 seconds. 

Time, minutes 

Figure 10.- Time h is tory  of response of to ro ida l  configuration t o  control f o r  
i n i t i a l  angular misalinement of p = 0.1 radian. 
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CONCLUDING REMARKS 

A study w a s  made of a technique f o r  the  synthesis of bang-bang control 
systems as applied t o  the  a t t i tude  control of spinning space vehicles. 
sis w a s  placed on studying de ta i l s  of t he  technique when applied t o  a system 
with component dynamics. While some analytical  resu l t s  were ut i l ized,  the 
investigation w a s  based primarily on analog computer simulations of the a t t i tude  
control of two different  space vehicles. 

Ehpha- 

The first application w a s  t o  a pencill ike vehicle configuration with a 
high spin rate. It w a s  found tha t  component dynamics cannot be neglected i n  
deriving the  switching logic fo r  t h i s  type of system. Adequate compensation 
f o r  a transport plus f i rs t -order  je t  l a g  w a s  produced by feeding back the out- 
put of a l inea r  model of t he  j e t  dynamics which w a s  b u i l t  in to  the  control 
loop. 
t o  compensate f o r  the  l a g  of the je t .  
f o r  by a simple adjustment of the  gains i n  the  control loop. This system w a s  
quite sensit ive t o  increases from the  nominal spin r a t e  i n  tha t  5-percent 
increases were very deleterious t o  system performance. It w a s ,  however, less 
sensit ive t o  decreases i n  spin rate. 

This feedback had the  effect  of introducing a lead in to  the  switching 
The rate-gyro dynamics were compensated 

The second application w a s  t o  a toroidal  configuration w i t h  a l o w  spin r a t e  
The long periods characterist ic of the motion of t h i s  vehicle and high iner t ia .  

permitted neglect of the  j e t  and m r o  dynamics. 
t i a l l y  an application of t he  type of idealized control system derived i n  refer- 
ence 1 t o  a radically different vehicle. 
vehicle could be very effectively controlled by the  idealized control system. 

Thus, t h i s  study w a s  essen- 

The resu l t s  showed tha t  t h i s  type of 

It w a s  found tha t  a relat ively simple cut-off function could be used t o  
eliminate the  wasting of fue l  i n  l i m i t  cycles. O f  course, there would be some 
residual motion a f t e r  t he  control system i s  cut off .  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hmpton, Va., October 16, 1964. 



APPENDIX 

MODIFICATION ANALlySIS 

In  reference 1 the following equations are considered: 

$?= [A]? + UZ 
where 

+ 
where u is  understood t o  be zero when x = 0. It w a s  found tha t  the con- 
di t ions on the  vector ? tha t  make the system stable are: 

-+ 
( a )  The vector b is  of the form 

where 

(b)  A l l  roots of 

[B] = [BJ" > 0 

det ([I A + ++ ab*-  A[I]) = 0 (A3 1 

have negative real parts.  I n  equation (A3),  [I] is  the ident i ty  matrix. 

This relationship w a s  applied t o  the idealized set of equations t o  obtain 
the cjriginal idealized gain vector. 
written i n  vector-matrix form 

The equations f o r  the  idealized system are 

where 

(A5 I 
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r o  (u 0 0 -  

I 0 -1 -Po 0 
L 

+ a. = 

- -  
J 

0 

0 

0 - _  

cu = (l - 

J = -  MY 
I 

+ 
When the  conditions are applied t o  the vector boy the form with the l ea s t  

elements which sa t i s fy  these conditions i s  

+ bo = 

Thus, i n  the idealized system it i s  necessary t o  feed back q, corresponding t o  
bo,1y and p, corresponding t o  b0,4. 

Now it 1s desired t o  modify the or iginal  system so tha t  it w i l l  handle time 
The system has a time lag i n  t he  pi tch feedback due t o  g y ~ o  dynamics and lags. 

a time lag  i n  the  control moment due t o  the j e t  dynamics. The j e t  time l a g  i s  
considered first. 

For purposes of analysis t he  j e t  t i m e  l ag  i s  considered l inear  and first 
order. The equation used t o  describe it i s  

I 



. 
T u + u = u  

* 
x, = 

where U i s  the lagging control and u is  the  idea l  control. This equation 
may be rewritten 

r .  

Q 

r 

a 

P 
U 

If u i n  the  or iginal  set of equations (Ah) i s  replaced by U and equa- 
t i on  (Al3) i s  added t o  the  original set ,  a new fifth-order s e t  i s  formed which 
may be written i n  vector matrix form 

i 
x1 = pp1 

where 

L 

UI 

0 

0 

-1 

0 

3 + alu 

c -  

0 

0 

0 

0 J -  

0 0  

+PO 0 

0 0  -PO 
1 0 0 - -  T 
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u = sgnpl  

+ Applying the conditions f o r  a s table  gain vector t o  t h e  vector b l  gives 

This application means t h a t  with the j e t  t i m e  lag t h e  feedback i s  
through the  gain bl,l, p through t h e  gain b1,4, and U through the  gain 

bl,>. 
back. The gyro t i m e  lag i s  considered next. The equation used is  

q 

The way t o  correct f o r  a lagging control i s  t o  feed the control output 

This equation i s  broken up in to  two f i rs t -order  equations. L e t  

= x7 

Adding equations (A21) and (A22) t o  the  fifth-order s e t  given by equation (Al4) 
a seventh-order set i s  obtained and written 

% + x2 = + a2u 

where 
q ;i r 
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+ a2 = 

(I) 

0 

0 

-1 

0 

0 

0 

0 

0 

0 

-PO 

0 

0 

0 

0 

0 

PO 
0 

0 

0 

0 

4 

3 u = s g n k 2  

-0- 

0 

0 

0 

1 
T 

0 

0 

- 

_ -  

J 

0 

0 

0 

1 
T 

- -  
0 

0 

0 

0 

0 

0 

0 

0 

1 - -  
T12 

- 
0 

0 

0 

0 

0 

1 

1 - -  
T12- 

3 
The condition tha t  b.2 be of the  form -pd$2 can be sa t i s f ied  with b2 

of the  form 
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This means tha t  i f  a l l  the  roots of 

det (p2] + -++ a2b2* - h [I]) = 0 

have negative real parts, the only necessary feedback i s  p through the gain 
b2,4, U through the  gain b2,3, and Q through the  gain b2,6. Rather than 
solve f o r  the roots of equation (w)  t h i s  feedback w a s  assumed suff ic ient  and 
the problem simulated on an analog computer. It w a s  found tha t  the assumption 
w a s  correct since the l i nea r  problem w a s  made t o  work with the  control output 
fed back. Modification f o r  the gyro time lag w a s  only an adjustment of gains. 
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